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Abstract

The form-finding of architectural fabric membranes may be achieved using various methods. However, this analysis

always requires the calculation of stable shapes, and knowledge of the order of the possible mechanisms may provide

the designer with useful data. The ‘‘surface stress density method’’ has been proposed as an effective form-finding tool

for the design of fabric membranes. It enables tensile shapes to be determined by considering the isotropic prestress

tensors in the membrane. The first objective of this paper is to demonstrate that the forms calculated in accordance with

this mechanical property are stable. The second is to calculate their mechanism order. The approach is based on an

energy criterion, pointed out by writing out the potential strain energy of the system and by using Lejeune–Dirichlet�s
theorem. This leads to defining suitable stability criteria in the vectorial subspace of the mechanisms and in the vectorial

subspace orthogonal to the mechanisms. We also determine that the mechanisms in the system are of order one. The

case of tensile cable nets is also analyzed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fabric membranes and, more generally, tensile structures are characterized by their dependence on shape

and prestress distribution, since an internal equilibrium must be respected initially. Several methods have

been proposed to determine the two parameters, geometry and prestress, during what is called the ‘‘form-

finding’’ process.

Several investigations have been carried out by physical modeling, such as F. Otto�s work (1973) on soap

films. Today, form-finding is carried out using numerical techniques.
The main methods deal with finite element procedures for large displacements (Haug and Powell, 1971)

or with the dynamic relaxation approach (Barnes, 1975 and Lewis, 1996). However, one of the most

common processes is the force density method (Sheck, 1974). This approach allows several equilibrium

equations to be linearized but is limited to the case of tensile cable nets. Thus, Maurin and Motro (1998)
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Nomenclature

ð~xe~ye~zeÞ element e local axis

ð~X~Y~ZÞ system global axis

½ �, ½ �t matrix and transpose matrix

f g, < > column vector and line vector (f gt ¼< >)

k k vector Euclidian norm

n n ¼ 6 for a cable element and n ¼ 9 for a membrane element

fdeg, fdg elementary ðnÞ and assembled ðNÞ vector of node displacements (m)

ff eg,fF g elementary ðnÞ and assembled ðNÞ vector of nodal internal forces (N)

½ae�,½A� elementary ðn� 3Þ and assembled ðN � 3EÞ equilibrium matrix of the structure (m2)

½kel �, ½Kl� elementary ðn� nÞ and assembled ðN � NÞ linear stiffness matrix (Nm�1)

½de�,½D� elementary ðn� nÞ and assembled ðN � NÞ energy characterization matrix (Nm�1)

KerAt, ImA vectorial nullspace and column space of ½A�
fdKg, fdIg assembled vector ðNÞ of mechanisms and orthogonal to mechanisms (m)

feeg,fee‘g elementary linear Green–Lagrange strain global (6) and local (3) vector

feeKg, feeIg elementary global linear G–L strain vector (6) on KerAt and on ImA

feK‘eg, feI‘eg elementary local linear G–L strain vector (3) on KerAt and on ImA

fre
0‘g, fr0‘g elementary (3) and assembled (3E) local prestress vector (Nm�2)

fre
0g, fr0g elementary (6) and assembled (6E) global prestress vector (Nm�2)

freg, frg elementary (6) and assembled (6E) global stress vector (Nm�2)

W ðdÞ total strain energy (Nm)

W ðdKÞ, W ðdIÞ strain energy on KerAt and on ImA (Nm)

½T e
r �, ½T e

e � elementary stress (6 · 3) and strain (3 · 6) transformation matrix

½bel � elementary linear displacements interpolation ð6� nÞ matrix (m�1)

½Ee� elementary material elastic coefficients matrix (6 · 6) matrix (Nm�2)

N , E number of degrees of freedom (d.o.f.) and number of elements

se cable cross-section area or membrane surface area (m2)

te membrane thickness (m)

ve element volume (m3)

Le, L0
e cable initial length and after displacement length (m)

Lei membrane side i initial length (m)

De, De
i cable length variation and membrane side i length variation (m)

eei membrane side i strain
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have developed the ‘‘surface stress density method’’ whereby the force density method is generalized to the
case of surfaces. It is characterized by the use of isotropic prestress tensors in the membrane.

Nevertheless, the stability issue of the determined shapes is not systematically studied by the authors.

This remains highly important since a useful and reliable shape-finding method requires that it determine

only stable forms. Moreover, tensile systems may have at least one mechanism and it is also important to
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know the order of this mechanism. This value indeed represents the maximum deformation of the elements

in the system when a displacement follows the mechanism: a high order (infinite at the limit) implies low

deformation (no deformation at the limit i.e., a solid body movement). Hence, knowing the order may help

the designer to evaluate the mechanical behavior of the system if such a situation arises.
The first purpose of this paper is thus to demonstrate that a membrane surface determined by using

isotropic prestress tensors is always stable. The next step will be to calculate the order of the possible

mechanisms.

The paper hence deals with the case of isotropic membranes as well as that of tensile cable nets. After

some considerations on equilibrium stability, we will define the mechanical modeling used for these systems

and the mathematical formulations used to determine the mechanisms.

The approach will lead us to writing out the ‘‘elementary energy characterization matrix’’ followed by

the necessary stability criteria. We will subsequently verify whether tensile isotropic surfaces and cable nets
satisfy these criteria. This will also enable us to determine the order of the mechanism according to energy

characterization (Vassart et al., 2000).
2. Equilibrium stability

Lejeune–Dirichlet�s theorem can be used to ascertain the stability of a conservative system. It demon-

strates that an equilibrium position is stable if its potential energy is strictly minimal. If we consider the

particular case of an unloaded structure (no external loading such as wind or snow), then the potential

energy corresponds to the internal strain energy W .

The geometry of a prestressed structure is determined by using a form-finding method that allows the

calculation of its shape and prestress. This provides the ‘‘reference configuration’’ that is characterized by a

nil strain energy (W ¼ 0 because no displacement occurs). Hence, when a compatible virtual displacement d
is considered in the vicinity of this reference geometry, the strain energy is of a strict minimum only and

only if the increment W ðdÞ is positive definite.

Moreover, Liapounov (Knops and Wilkes, 1973) has demonstrated that the positive definitiveness of an

analytic function depends on the terms of its lowest degree of development. This means that if the main part

of the function W ðdÞ is positive definite, then W ðdÞ is also positive definite. As a consequence, only the main

part of strain energy will be considered in our calculations.

The assumption that virtual displacement relates to the vicinity of the reference geometry implies that the

study respects the small displacements hypothesis. The displacement d is thus of an order inferior or equal
to one, that is to say kdk6O1 by using the vector Euclidian norm. More generally, we will write the order r
as Or ¼ nOr�1 ¼ nrO0. The order O0 corresponds to the order zero (matching up to the lengths of the

elements in the system) and n is a strictly positive real number that is very small with respect to one (n � 1).

The written form �r will be used for an equality limited to order r in its development; the symbol � will

be considered as equivalent to �1 .

As a conclusion, the stability criterion for a structure requires that 8d 2 ðRN � 0Þ with kdk6O1 so

W ðdÞ > 0 must be verified.
3. Mechanical modeling of isotropic prestressed systems

3.1. Representation of structural prestress

Through discrete modeling using finite elements it is possible to characterize the prestress state of a
structure by considering the Cauchy prestress tensors for each element. These tensors are usually written in
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the local axis ð~xe ~ye ~zeÞ associated to the elements and according to the column vector fre
0‘g (the notation ‘

shows a ‘‘local axis’’ writing).

For a cable element, prestress has only one non-nil component along the~xe axis.
Thus, a tensile cable element is written as fre

0‘g
t ¼ h r0xe r0ye r0xye i ¼ h r0xe 0 0 i so that fre

0‘g
t ¼

h re
0‘ 0 0 i with re

0‘ > 0.

In the case of tensile membranes, the prestress for an element is characterized in its local axis by fre
0‘g

t ¼
h r0xe r0ye r0xye i. However, if we consider the particular situation of an isotropic prestressed membrane,

the shear prestress r0xye will be equal to zero and r0xe ¼ r0ye . For a membrane element, this implies that

fre
0‘g

t ¼ h re
0‘ re

0‘ 0 i with re
0‘ > 0.

3.2. Search for mechanisms

When a structure is discretized with finite elements, the internal pretension forces acting on the nodes of
an element may be calculated according to:
ff eg ¼ ve½bel �
tfre

0g ¼ ve½bel �
t½T e

r �fre
0‘g ¼ ½ae�fre

0‘g ð1Þ
where ve represents the volume of the element, ½bel � the linear displacement interpolation matrix and ½T e
r � the

‘‘local to global’’ stress transformation matrix.

All the vectors and matrices are written in the global axis of the structure ð~X~Y~ZÞ, except for quantities
using the suffix ‘ which are written in the local axis of the element.

By assembling the elementary equation (1), we get:
fF g ¼ ½A�fr0‘g ¼ f0g ð2Þ

This relationship shows that the reference position is in equilibrium and fr0‘g characterizes the selfstress

vector of the entire system (written by considering the elementary values re
0‘). The matrix ½A� is called the

‘‘equilibrium matrix’’ of the structure.

If we consider a compatible virtual displacement d ¼ fdg of the nodes (vectorial writing), the linearized

strain tensor of Green–Lagrange may be determined by:
fee‘g ¼ ½T e
e �feeg � ½T e

e �½bel �fd
eg ð3Þ
where ½T e
e � ¼ ½T e

r �
t
corresponds to the ‘‘global to local’’ strain transformation matrix. Thus:
vefee‘g � ve½T e
r �

t½bel �fd
eg ¼ ½ae�tfdeg ð4Þ
We then assemble the elementary relationships (4) with feve‘ g ¼ vefee‘g giving:
fev‘g � ½A�tfdg ð5Þ

The kernel of ½A�t, written KerAt, defines the vectorial subspace of the mechanisms. It corresponds to

the vectors fdg that verify feve‘ g ¼ f0g.
However, it can be demonstrated (Vassart et al., 2000) that, in the displacement space RN , the vectorial

subspace ImA (the column space of matrix ½A�) is orthogonal and supplementary to the mechanisms.

Hence, we have RN ¼ KerAt � ImA where � is the direct summation. Each displacement can thus be

uniquely split up into:
fdg ¼ fdKg þ fdIg with fdKg 2 KerAt and fdIg 2 ImA ð6Þ
4. Determining elementary strain energy in the subspace of mechanisms

We will now consider the case where the displacement corresponds with a mechanism and where no

orthogonal displacement fdIg occurs. This means that fdg ¼ fdKg of order rP 1.
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The objective is to propose a matrix writing of the elementary strain energy W ðdeKÞ where the virtual

displacement corresponds with the mechanism fdeKg.

4.1. Case of prestressed cable element

The displacement vector of nodes 1 and 2 for a cable element e of initial length Le is:
fdeKg
t ¼ h~d1j~d2i ¼ hd1X d1Y d1Z jd2X d2Y d2Z i
(see Fig. 1). After deformation the member length (with ~d12 ¼~d1 �~d2) becomes:
L02
e ¼ 1020

�!2

¼ ðX12 þ d12X Þ
2 þ ðY12 þ d12Y Þ

2 þ ðZ12 þ d12Z Þ
2 ¼ L2

e þ~d212 þ 2~d12 � 12
�! ð7Þ
Since ~d12 �~xe ¼ 0 by definition of the vectorial subspace KerAt, it follows that:
L0
e ¼ Le 1

 
þ
~d212
L2
e

!1=2

�2r Le þ
~d212
2Le

ð8Þ
Cable length variation is thus:
De ¼ L0
e � Le �

2r ~d212
2Le

ð9Þ
And cable strain, written in its local axis:
feeK‘g
t ¼< eKxe eKye eKxye >¼< eKxe 0 0 > with eKxe �

2r ~d212
2L2

e

ð10Þ
The elementary strain energy of a prestressed cable in the mechanism subspace is:
W ðdeKÞ ¼ ver0xeeKxe ð11Þ
where ve ¼ seLe is the cable volume and se its cross-section area.

We can then write the following matrix form:
W ðdeKÞ�
2r 1

2
fdeKg

t½de�fdeKg ð12Þ
with
½de� ¼ vere
0‘

L2
e

½Id3� �½Id3�
�½Id3� ½Id3�

� �
where ½Id3� is the ð3� 3Þ identity matrix ð13Þ
We propose calling the symmetric matrix ½de� the ‘‘elementary energy characterization matrix’’.
δ1 δ2
Le

'Le

1

1' 2'

2

X Y
Z

xe

Fig. 1. Deformation of a cable element in KerAt.
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4.2. Case of isotropic prestressed membrane element

The displacement vector for nodes 1, 2 and 3 of a membrane element e with an initial area se is (see Fig.
2):
fdeKg
t ¼ h~d1j~d2j~d3i ¼ hd1X d1Y d1Z jd2X d2Y d2Z jd3X d3Y d3Z i
The length variations of the three sides are:
De
1 �
2r ~d212

2Le1

; De
2 �
2r ~d223

2Le2

; De
3 �
2r ~d231

2Le3

ð14Þ
And the associated strains of the sides are:
eei ¼
De

i

Lei
ð15Þ
The membrane strain may thus be written, in its local axis, as:
feeK‘g ¼
( eKxe

eKye
eKxye

)
�2r 1

b2c3 � c2b3

b2c3 � c2b3 0 0
a3c2 � a2c3 c3 �c2
a2b3 � a3b2 �b3 b2

2
4

3
5 ee1

ee2
ee3

8<
:

9=
; ð16Þ
with the coefficients:
ai ¼ cos2 hi; bi ¼ sin2 hi; ci ¼ cos hi sin hi ð17Þ

where hi is the oriented angle between the local axis~xe and the side i.

Moreover, with w ¼ h2 � h3 we have:
b2c3 � c2b3 ¼ sin h2 sin h3 sinw > 0 ð18Þ

This leads to:
eKxe

eKye

� �
�2r 1

2

1
L2
e1

0 0

1
L2
e1
tgh2tgh3

1
2setgh3

�1
2setgh2

" # ~d212
~d223
~d231

8><
>:

9>=
>; ¼ 1

2
½me�

~d212
~d223
~d231

8><
>:

9>=
>; ð19Þ
We chose to write the matrix ½me� as:
½me� ¼ me
11 0 0

me
21 me

2 me
3

� �
ð20Þ
xe

ye

ze

Le1

Le2Le3

θ3

θ2
ψ

1

X
Y

Z

2

3

Fig. 2. Membrane element geometry.
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By definition, the strain energy on the vectorial subspace of mechanisms KerAt for a prestressed membrane

element is:
W ðdeKÞ ¼ vefre
0‘g

tfeeK‘g ð21Þ
where ve ¼ sete corresponds to the volume of the element and te its thickness.
If we assume that the prestress on the element is isotropic, then fre

0‘g
t ¼ h re

0‘ re
0‘ 0 i and the strain

energy becomes:
W ðdeKÞ ¼ vere
0‘ðeKxe þ eKyeÞ�

2r 1

2
vere

0‘ me
1
~d212

�
þ me

2
~d223 þ me

3
~d231

�
ð22Þ
with me
1 ¼ me

11 þ me
21 ¼ 1

2setgw
. Moreover, the coefficients me

i verify:
me
1 þ me

2 ¼
Le3

2se

� 	2

> 0; me
1 þ me

3 ¼
Le2

2se

� 	2

> 0; me
2 þ me

3 ¼
Le1

2se

� 	2

> 0 ð23Þ
The strain energy on KerAt, for an isotropic prestressed membrane element, may therefore be written in

the same form of Eq. (12).

We can indeed get W ðdeKÞ�
2r

1
2
fdeKg

T ½de�fdeKg where ½de� represents the elementary energy characterization

matrix:
½de� ¼ 1

2
vere

0‘

ðme
1 þ me

3Þ½Id3� �me
1½Id3� �me

3½Id3�
�me

1½Id3� ðme
1 þ me

2Þ½Id3� �me
2½Id3�

�me
3½Id3� �me

2½Id3� ðme
2 þ me

3Þ½Id3�

2
4

3
5 ð24Þ
5. Stability analysis in the different subspaces

This section deals simultaneously with the two types of studied systems (a prestressed cable net and an

isotropic prestressed membrane).

The purpose of the approach is to define a stability criterion, firstly, in the vectorial subspace orthogonal

to the mechanisms ImA and secondly, in the vectorial subspace of the mechanisms KerAt. We will then

consider the case where the virtual displacement relates to both of these vectorial subspaces.

5.1. Stability in ImA

According to the splitting fdg ¼ fdKg þ fdIg, we study the situation where fdKg ¼ f0g and fdg ¼ fdIg
of order rP 1. The elementary strain energy is:
W ðdeIÞ ¼ vefre
0g

tfeeIg þ
1

2
vefregtfeeIg ð25Þ
We assume that the behavior of the material is elastic linear; the matrix ½Ee� represents the material elastic
coefficients. Moreover, we also assume that these coefficients are of the order O�1 ¼ O0=n (Vassart et al.,

2000). It follows that:
feeIg�
r ½bel �fd

e
Ig and freg ¼ ½Ee�feeIg�

r�1½Ee�½bel �fd
e
Ig ð26Þ
The elementary deformation energy thus becomes:
W ðdeIÞ �
2r�1

vefre
0g

t½bel �fd
e
Ig þ

1

2
vefdeIg

t½bel �
t½Ee�½bel �fd

e
Ig ð27Þ
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If ½kel � represents the elementary linear stiffness matrix, we can write:
W ðdeIÞ �
2r�1

vefre
0‘g

t½T e
r �

t½bel �fd
e
Ig þ

1

2
fdeIg

t½kel �fd
e
Ig ð28Þ

W ðdeIÞ �
2r�1fre

0‘g
t½ae�tfdeIg þ

1

2
fdeIg

t½kel �fd
e
Ig ð29Þ
Assembling the relationships (29) gives:
W ðdIÞ �
2r�1fr0‘gt½A�tfdIg þ

1

2
fdIgt½Kl�fdIg ð30Þ
Since Eq. (2) shows the structure equilibrium by ½A�fr0‘g ¼ f0g, the strain energy of the global system is

therefore:
W ðdIÞ �
2r�1 1

2
fdIgt½Kl�fdIg ð31Þ
If suitable boundary conditions have been specified to the structure (i.e., no rigid body movement), then

the global linear stiffness matrix ½Kl� is positive definite.

We can deduce, in such a case, that the strain energy W ðdIÞ is also positive definite and thus conclude

that a tensile system is always stable when virtual displacement does not relate to the vectorial subspace of

the mechanisms.

5.2. Stability in KerAt

In this case, we consider that fdg ¼ fdKg of order rP 1. The elementary strain energy is:
W ðdeKÞ ¼ vefre
0g

tfeeKg þ
1

2
vefregtfeeKg ð32Þ
Since freg ¼ ½Ee�feeKg and since the components of feeKg are related to ~d2ij terms of order 2, then the

multiplication fregtfeeKg is of order 4r � 1.

By limiting the expression (32) to the main order 2r, we obtain:
W ðdeKÞ�
2r
vefre

0g
tfeeKg ¼ vefre

0‘g
tfeeK‘g ¼ 1

2
fdeKg

t½de�fdeKg ð33Þ
Therefore, by assembling the elementary equation (33):
W fdKg�
2r 1

2
fdKgt½D�fdKg ð34Þ
The global energy characterization matrix [D] is written by assembling the matrices ½de�. We stress the fact

that, if [D] is positive definite, then W ðdKÞ is also positive definite.

Moreover, if a displacement dK 6¼ 0 verifies at the second order that fdKgt½D�fdKg2 6¼ 0, it is not nec-
essary to take into account the terms of dK of an order superior to one so as to calculate W ðdKÞ. This means

that, in such a case, the system has mechanisms of order one only.

The stability criterion in KerAt may be stated thus:

‘‘An isotropic tensile system with a virtual displacement in the vectorial subspace of its mechanisms is

stable if, and only if, its energy characterization matrix is positive definite. If such a condition is veri-

fied, the mechanisms are of order one’’.

The study of the positive definitiveness of the matrix ½D� will be carried out in Section 5.5.
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After the definition of the stability criteria in the two vectorial subspaces ImA and KerAt, we propose

carrying out a study on their vicinity. Generally speaking, a virtual displacement does indeed relate to both

of these subspaces.
5.3. Stability in the vicinity of ImA

We consider fdg ¼ fdKg þ fdIg with fdIg of order one and fdKg of order rP 1. Since feeg ¼ feeKg þ feeIg
the elementary strain energy is:
W ðdeÞ ¼ vefre
0g

tfeeg þ 1

2
vefregtfeeg ð35Þ
By limiting this relationship to the main order, we have:
W ðdeÞ�2r 1
2
fdeIg

t½kel �fd
e
Ig þ

1

2
fdeKg

t½de�fdeKg ð36Þ
and, by assembling the relations:
W ðdÞ�2r 1
2
fdIgt½Kl�fdIg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

order 1

þ 1

2
fdKgt½D�fdKg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

order 2r

ð37Þ
We note that (W d) is always positive definite because the matrix ½Kl� is positive definite.

Nevertheless, this does not automatically imply the stability of the system. The vicinity of ImA could

indeed correspond to the vicinity of a mechanism. The stability will then be dependent on this other KerAt

vicinity.
5.4. Stability in the vicinity of KerAt

In this case fdg ¼ fdIg þ fdKg with fdIg of order rP 1 and fdKg of order one.

According to a similar approach and by limiting the formula to the main order, we obtain:
W ðdÞ�a 1

2
fdIgt½Kl�fdIg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

order 2r�1

þ 1

2
fdKgt½D�fdKg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

order 2

with a ¼ maxð2r � 1; 2Þ ð38Þ
We point up that whatever order r of fdIg is chosen, W ðdÞ is always positive definite if the matrix ½D� is
positive definite.

The stability criterion for an isotropic tensile system could therefore be linked to the analysis of positive

definitiveness of the energy characterization matrix in the vectorial subspace of the mechanisms KerAt.
5.5. Positive definitiveness study of the energy characterization matrix

5.5.1. Case of prestressed cable net

The matrix ½D� is positive definite in KerAt if 8d 2 ðKerAt � 0Þ of order r so that W ðdÞ�2r fdgt �
½D�fdg > 0.

We see that Dij ¼ Dji < 0 since ½de� matrices are symmetric. Moreover, the elimination of the lines and
columns of ½D� by assembling these elementary matrices according to suitable boundary conditions (like-

wise the matrix ½Kl� assembly), leads to Dii P
PN

j¼1ðj 6¼iÞ �Dij > 0.
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This may be written as the relation Dii ¼
PN

j¼1ðj6¼iÞ �Dij þD�
ii with D�

ii > 0. Thus, we have:
W ðdÞ�2r
XN
i¼1

d2iDii

 
þ di

XN
j¼1ðj6¼iÞ

djDij

!
¼
XN
i¼1

 
� d2i

XN
j¼1ðj 6¼iÞ

Dij þ di
XN

j¼1ðj 6¼iÞ
djDij þ d2iD

�
ii

!
ð39Þ
since
XN
i¼1

d2i
XN

j¼1ðj 6¼iÞ
Dij

 !
¼
XN
i¼1

XN
j¼iþ1

ðd2i

 
þ d2j ÞDij

!
ð40Þ
and
XN
i¼1

di
XN

j¼1ðj 6¼iÞ
djDij

 !
¼ 2
XN
i¼1

XN
j¼iþ1

didjDij

 !
ð41Þ
the strain energy may be written as:
W ðdÞ�2r
XN
i¼1

XN
j¼iþ1

Dijð
 

�d2i þ 2didj � d2j Þ þ d2iD
�
ii

!
ð42Þ
This leads to:
W ðdÞ�2r
XN
i¼1

 
�
XN
j¼iþ1

Dijd
2
ij þ d2iD

�
ii

!
> 0 ð43Þ
The energy characterization matrix positive is therefore positive definite.

This analysis permits the verification that fdKgt½D�fdKg2 6¼ 0 for a displacement dK 6¼ 0 of order one and

then concludes that the mechanisms of a tensile cable net are always of order one.

We may however note that, if the boundary conditions are not suitable or are not taken into account
during the assembly, the matrix ½D� is only semi positive definite. This case signifies that there is a degree of

freedom i withD�
ii ¼ 0 and another degree of freedom j such that, for di ¼ dj, we have W ðdÞ ¼ 0 (i.e., a rigid

body movement).
5.5.2. Case of isotropic prestressed membrane element

Although the approach is slightly different here, the above remark for cable net may be applied. An

analysis of displacements for a membrane element results in:
~d212 ¼~d223 þ~d231 � 2k~d23kk~d31k; ~d223 ¼~d212 þ~d231 � 2k~d12kk~d31k
and
~d231 ¼~d212 þ~d223 � 2k~d12kk~d23k ð44Þ
Study is based on the matrix values ½me� defined in (20) and the relations (22).

If 8me
2 we verify me

1 P 0 and me
3 6 0, so that the elementary strain energy may be written as:
W ðdeKÞ�
2r 1

2
vere

0‘
~d223 me

1

��
þ me

3

�
þ~d231 me

2

�
þ me

3

�
� 2me

3k~d23kk~d31k
�

ð45Þ
According to the relationships (23), we therefore obtain W ðdeKÞP 0.
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Likewise, if me
1 6 0 and me

3 6 0 then:
W ðdeKÞ�
2r 1

2
vere

0‘
~d212 me

1

��
þ me

3

�
þ~d231 me

1

�
þ me

2

�
� 2me

1k~d12kk~d31k
�
P 0 ð46Þ
In every situation, the strain energy verifies that W ðdeKÞP 0 and consequently, the elementary matrices

½de� are semi positive definite.

In the light of the previous remark pointed up for cable net, the choice suitable boundary conditions in
assembling the matrices ½de� will lead to the positive definitiveness of the energy characterization matrix ½D�.
6. Conclusion

The design of tensile structures, fabric membranes and cable nets, could be carried out by considering

isotropic prestressed systems. However, the shapes so calculated have to be stable. This paper demonstrates

that a system determined according to this prestress distribution is stable.

Lejeune–Dirichlet�s theorem indeed shows that, for such structures, the stability criteria are dependent

on the behavior analysis within the vicinity of the mechanism subspace. By defining and writing out the

energy characterization matrix, the stability criteria can be associated with the positive definitiveness of this
matrix. As such a requirement is verified for isotropic prestressed structures, this demonstrates their sta-

bility and that the order of the mechanisms is equal to one.
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